

Ptyprocess

Launch a subprocess in a pseudo terminal (pty), and interact with both the
process and its pty.

Sometimes, piping stdin and stdout is not enough. There might be a password
prompt that doesn’t read from stdin, output that changes when it’s going to a
pipe rather than a terminal, or curses-style interfaces that rely on a terminal.
If you need to automate these things, running the process in a pseudo terminal
(pty) is the answer.

Interface:

p = PtyProcessUnicode.spawn(['python'])
p.read(20)
p.write('6+6\n')
p.read(20)

Contents:

	Ptyprocess API

What is a pty?

A pty is a kernel-level object which processes can write data to and read data
from, a bit like a pipe.

Unlike a pipe, data moves through a single pty in both directions. When you use
a program in a shell pipeline, or with subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] in Python, up
to three pipes are created for the process’s standard streams (stdin, stdout
and stderr). When you run a program using ptyprocess, all three of its standard
streams are connected to a single pty:

[image: _images/pty_vs_popen.png]
A pty also does more than a pipe. It keeps track of the window size (rows and
columns of characters) and notifies child processes (with a SIGWINCH signal)
when it changes. In cooked mode, it does some processing of data sent from the
parent process, so for instance the byte 03 (entered as Ctrl-C) will cause
SIGINT to be sent to the child process.

Many command line programs behave differently if they detect that stdin or stdout
is connected to a terminal instead of a pipe (using
isatty() [http://linux.die.net/man/3/isatty]), because this normally means
that they’re being used interactively by a human user.
They may format output differently (e.g. ls lists files in columns)
or prompt the user to confirm actions.
When you run these programs in ptyprocess, they will exhibit their ‘interactive’
behaviour, instead of the ‘pipe’ behaviour you’ll see using Popen().

See also

	The TTY demystified [http://www.linusakesson.net/programming/tty/]

	Detailed article by Linus Akesson

Indices and tables

	Index

	Module Index

	Search Page

Ptyprocess API

	
class ptyprocess.PtyProcess(pid, fd)[source]

	This class represents a process running in a pseudoterminal.

The main constructor is the spawn() classmethod.

	
classmethod spawn(argv, cwd=None, env=None, echo=True, preexec_fn=None, dimensions=(24, 80), pass_fds=())[source]

	Start the given command in a child process in a pseudo terminal.

This does all the fork/exec type of stuff for a pty, and returns an
instance of PtyProcess.

If preexec_fn is supplied, it will be called with no arguments in the
child process before exec-ing the specified command.
It may, for instance, set signal handlers to SIG_DFL or SIG_IGN.

Dimensions of the psuedoterminal used for the subprocess can be
specified as a tuple (rows, cols), or the default (24, 80) will be used.

By default, all file descriptors except 0, 1 and 2 are closed. This
behavior can be overridden with pass_fds, a list of file descriptors to
keep open between the parent and the child.

	
class ptyprocess.PtyProcessUnicode(pid, fd, encoding='utf-8', codec_errors='strict')[source]

	Unicode wrapper around a process running in a pseudoterminal.

This class exposes a similar interface to PtyProcess, but its read
methods return unicode, and its write() accepts unicode.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 ptyprocess	

Index

 P
 | S

P

 	
 	PtyProcess (class in ptyprocess)

 	
 	ptyprocess (module)

 	PtyProcessUnicode (class in ptyprocess)

S

 	
 	spawn() (ptyprocess.PtyProcess class method)

 All modules for which code is available

	ptyprocess.ptyprocess

 Source code for ptyprocess.ptyprocess

import codecs
import errno
import fcntl
import io
import os
import pty
import resource
import signal
import struct
import sys
import termios
import time

try:
 import builtins # Python 3
except ImportError:
 import __builtin__ as builtins # Python 2

Constants
from pty import (STDIN_FILENO, CHILD)

from .util import which, PtyProcessError

_platform = sys.platform.lower()

Solaris uses internal __fork_pty(). All others use pty.fork().
_is_solaris = (
 _platform.startswith('solaris') or
 _platform.startswith('sunos'))

if _is_solaris:
 use_native_pty_fork = False
 from . import _fork_pty
else:
 use_native_pty_fork = True

PY3 = sys.version_info[0] >= 3

if PY3:
 def _byte(i):
 return bytes([i])
else:
 def _byte(i):
 return chr(i)

 class FileNotFoundError(OSError): pass
 class TimeoutError(OSError): pass

_EOF, _INTR = None, None

def _make_eof_intr():
 """Set constants _EOF and _INTR.

 This avoids doing potentially costly operations on module load.
 """
 global _EOF, _INTR
 if (_EOF is not None) and (_INTR is not None):
 return

 # inherit EOF and INTR definitions from controlling process.
 try:
 from termios import VEOF, VINTR
 fd = None
 for name in 'stdin', 'stdout':
 stream = getattr(sys, '__%s__' % name, None)
 if stream is None or not hasattr(stream, 'fileno'):
 continue
 try:
 fd = stream.fileno()
 except ValueError:
 continue
 if fd is None:
 # no fd, raise ValueError to fallback on CEOF, CINTR
 raise ValueError("No stream has a fileno")
 intr = ord(termios.tcgetattr(fd)[6][VINTR])
 eof = ord(termios.tcgetattr(fd)[6][VEOF])
 except (ImportError, OSError, IOError, ValueError, termios.error):
 # unless the controlling process is also not a terminal,
 # such as cron(1), or when stdin and stdout are both closed.
 # Fall-back to using CEOF and CINTR. There
 try:
 from termios import CEOF, CINTR
 (intr, eof) = (CINTR, CEOF)
 except ImportError:
 # ^C, ^D
 (intr, eof) = (3, 4)

 _INTR = _byte(intr)
 _EOF = _byte(eof)

setecho and setwinsize are pulled out here because on some platforms, we need
to do this from the child before we exec()

def _setecho(fd, state):
 errmsg = 'setecho() may not be called on this platform (it may still be possible to enable/disable echo when spawning the child process)'

 try:
 attr = termios.tcgetattr(fd)
 except termios.error as err:
 if err.args[0] == errno.EINVAL:
 raise IOError(err.args[0], '%s: %s.' % (err.args[1], errmsg))
 raise

 if state:
 attr[3] = attr[3] | termios.ECHO
 else:
 attr[3] = attr[3] & ~termios.ECHO

 try:
 # I tried TCSADRAIN and TCSAFLUSH, but these were inconsistent and
 # blocked on some platforms. TCSADRAIN would probably be ideal.
 termios.tcsetattr(fd, termios.TCSANOW, attr)
 except IOError as err:
 if err.args[0] == errno.EINVAL:
 raise IOError(err.args[0], '%s: %s.' % (err.args[1], errmsg))
 raise

def _setwinsize(fd, rows, cols):
 # Some very old platforms have a bug that causes the value for
 # termios.TIOCSWINSZ to be truncated. There was a hack here to work
 # around this, but it caused problems with newer platforms so has been
 # removed. For details see https://github.com/pexpect/pexpect/issues/39
 TIOCSWINSZ = getattr(termios, 'TIOCSWINSZ', -2146929561)
 # Note, assume ws_xpixel and ws_ypixel are zero.
 s = struct.pack('HHHH', rows, cols, 0, 0)
 fcntl.ioctl(fd, TIOCSWINSZ, s)

[docs]class PtyProcess(object):
 '''This class represents a process running in a pseudoterminal.

 The main constructor is the :meth:`spawn` classmethod.
 '''
 string_type = bytes
 if PY3:
 linesep = os.linesep.encode('ascii')
 crlf = '\r\n'.encode('ascii')

 @staticmethod
 def write_to_stdout(b):
 try:
 return sys.stdout.buffer.write(b)
 except AttributeError:
 # If stdout has been replaced, it may not have .buffer
 return sys.stdout.write(b.decode('ascii', 'replace'))
 else:
 linesep = os.linesep
 crlf = '\r\n'
 write_to_stdout = sys.stdout.write

 encoding = None

 argv = None
 env = None
 launch_dir = None

 def __init__(self, pid, fd):
 _make_eof_intr() # Ensure _EOF and _INTR are calculated
 self.pid = pid
 self.fd = fd
 readf = io.open(fd, 'rb', buffering=0)
 writef = io.open(fd, 'wb', buffering=0, closefd=False)
 self.fileobj = io.BufferedRWPair(readf, writef)

 self.terminated = False
 self.closed = False
 self.exitstatus = None
 self.signalstatus = None
 # status returned by os.waitpid
 self.status = None
 self.flag_eof = False
 # Used by close() to give kernel time to update process status.
 # Time in seconds.
 self.delayafterclose = 0.1
 # Used by terminate() to give kernel time to update process status.
 # Time in seconds.
 self.delayafterterminate = 0.1

[docs] @classmethod
 def spawn(
 cls, argv, cwd=None, env=None, echo=True, preexec_fn=None,
 dimensions=(24, 80), pass_fds=()):
 '''Start the given command in a child process in a pseudo terminal.

 This does all the fork/exec type of stuff for a pty, and returns an
 instance of PtyProcess.

 If preexec_fn is supplied, it will be called with no arguments in the
 child process before exec-ing the specified command.
 It may, for instance, set signal handlers to SIG_DFL or SIG_IGN.

 Dimensions of the psuedoterminal used for the subprocess can be
 specified as a tuple (rows, cols), or the default (24, 80) will be used.

 By default, all file descriptors except 0, 1 and 2 are closed. This
 behavior can be overridden with pass_fds, a list of file descriptors to
 keep open between the parent and the child.
 '''
 # Note that it is difficult for this method to fail.
 # You cannot detect if the child process cannot start.
 # So the only way you can tell if the child process started
 # or not is to try to read from the file descriptor. If you get
 # EOF immediately then it means that the child is already dead.
 # That may not necessarily be bad because you may have spawned a child
 # that performs some task; creates no stdout output; and then dies.

 if not isinstance(argv, (list, tuple)):
 raise TypeError("Expected a list or tuple for argv, got %r" % argv)

 # Shallow copy of argv so we can modify it
 argv = argv[:]
 command = argv[0]

 command_with_path = which(command)
 if command_with_path is None:
 raise FileNotFoundError('The command was not found or was not ' +
 'executable: %s.' % command)
 command = command_with_path
 argv[0] = command

 # [issue #119] To prevent the case where exec fails and the user is
 # stuck interacting with a python child process instead of whatever
 # was expected, we implement the solution from
 # http://stackoverflow.com/a/3703179 to pass the exception to the
 # parent process

 # [issue #119] 1. Before forking, open a pipe in the parent process.
 exec_err_pipe_read, exec_err_pipe_write = os.pipe()

 if use_native_pty_fork:
 pid, fd = pty.fork()
 else:
 # Use internal fork_pty, for Solaris
 pid, fd = _fork_pty.fork_pty()

 # Some platforms must call setwinsize() and setecho() from the
 # child process, and others from the master process. We do both,
 # allowing IOError for either.

 if pid == CHILD:
 # set window size
 try:
 _setwinsize(STDIN_FILENO, *dimensions)
 except IOError as err:
 if err.args[0] not in (errno.EINVAL, errno.ENOTTY):
 raise

 # disable echo if spawn argument echo was unset
 if not echo:
 try:
 _setecho(STDIN_FILENO, False)
 except (IOError, termios.error) as err:
 if err.args[0] not in (errno.EINVAL, errno.ENOTTY):
 raise

 # [issue #119] 3. The child closes the reading end and sets the
 # close-on-exec flag for the writing end.
 os.close(exec_err_pipe_read)
 fcntl.fcntl(exec_err_pipe_write, fcntl.F_SETFD, fcntl.FD_CLOEXEC)

 # Do not allow child to inherit open file descriptors from parent,
 # with the exception of the exec_err_pipe_write of the pipe
 # and pass_fds.
 # Impose ceiling on max_fd: AIX bugfix for users with unlimited
 # nofiles where resource.RLIMIT_NOFILE is 2^63-1 and os.closerange()
 # occasionally raises out of range error
 max_fd = min(1048576, resource.getrlimit(resource.RLIMIT_NOFILE)[0])
 spass_fds = sorted(set(pass_fds) | {exec_err_pipe_write})
 for pair in zip([2] + spass_fds, spass_fds + [max_fd]):
 os.closerange(pair[0]+1, pair[1])

 if cwd is not None:
 os.chdir(cwd)

 if preexec_fn is not None:
 try:
 preexec_fn()
 except Exception as e:
 ename = type(e).__name__
 tosend = '{}:0:{}'.format(ename, str(e))
 if PY3:
 tosend = tosend.encode('utf-8')

 os.write(exec_err_pipe_write, tosend)
 os.close(exec_err_pipe_write)
 os._exit(1)

 try:
 if env is None:
 os.execv(command, argv)
 else:
 os.execvpe(command, argv, env)
 except OSError as err:
 # [issue #119] 5. If exec fails, the child writes the error
 # code back to the parent using the pipe, then exits.
 tosend = 'OSError:{}:{}'.format(err.errno, str(err))
 if PY3:
 tosend = tosend.encode('utf-8')
 os.write(exec_err_pipe_write, tosend)
 os.close(exec_err_pipe_write)
 os._exit(os.EX_OSERR)

 # Parent
 inst = cls(pid, fd)

 # Set some informational attributes
 inst.argv = argv
 if env is not None:
 inst.env = env
 if cwd is not None:
 inst.launch_dir = cwd

 # [issue #119] 2. After forking, the parent closes the writing end
 # of the pipe and reads from the reading end.
 os.close(exec_err_pipe_write)
 exec_err_data = os.read(exec_err_pipe_read, 4096)
 os.close(exec_err_pipe_read)

 # [issue #119] 6. The parent reads eof (a zero-length read) if the
 # child successfully performed exec, since close-on-exec made
 # successful exec close the writing end of the pipe. Or, if exec
 # failed, the parent reads the error code and can proceed
 # accordingly. Either way, the parent blocks until the child calls
 # exec.
 if len(exec_err_data) != 0:
 try:
 errclass, errno_s, errmsg = exec_err_data.split(b':', 2)
 exctype = getattr(builtins, errclass.decode('ascii'), Exception)

 exception = exctype(errmsg.decode('utf-8', 'replace'))
 if exctype is OSError:
 exception.errno = int(errno_s)
 except:
 raise Exception('Subprocess failed, got bad error data: %r'
 % exec_err_data)
 else:
 raise exception

 try:
 inst.setwinsize(*dimensions)
 except IOError as err:
 if err.args[0] not in (errno.EINVAL, errno.ENOTTY, errno.ENXIO):
 raise

 return inst

 def __repr__(self):
 clsname = type(self).__name__
 if self.argv is not None:
 args = [repr(self.argv)]
 if self.env is not None:
 args.append("env=%r" % self.env)
 if self.launch_dir is not None:
 args.append("cwd=%r" % self.launch_dir)

 return "{}.spawn({})".format(clsname, ", ".join(args))

 else:
 return "{}(pid={}, fd={})".format(clsname, self.pid, self.fd)

 @staticmethod
 def _coerce_send_string(s):
 if not isinstance(s, bytes):
 return s.encode('utf-8')
 return s

 @staticmethod
 def _coerce_read_string(s):
 return s

 def __del__(self):
 '''This makes sure that no system resources are left open. Python only
 garbage collects Python objects. OS file descriptors are not Python
 objects, so they must be handled explicitly. If the child file
 descriptor was opened outside of this class (passed to the constructor)
 then this does not close it. '''

 if not self.closed:
 # It is possible for __del__ methods to execute during the
 # teardown of the Python VM itself. Thus self.close() may
 # trigger an exception because os.close may be None.
 try:
 self.close()
 # which exception, shouldn't we catch explicitly .. ?
 except:
 pass

 def fileno(self):
 '''This returns the file descriptor of the pty for the child.
 '''
 return self.fd

 def close(self, force=True):
 '''This closes the connection with the child application. Note that
 calling close() more than once is valid. This emulates standard Python
 behavior with files. Set force to True if you want to make sure that
 the child is terminated (SIGKILL is sent if the child ignores SIGHUP
 and SIGINT). '''
 if not self.closed:
 self.flush()
 self.fileobj.close() # Closes the file descriptor
 # Give kernel time to update process status.
 time.sleep(self.delayafterclose)
 if self.isalive():
 if not self.terminate(force):
 raise PtyProcessError('Could not terminate the child.')
 self.fd = -1
 self.closed = True
 #self.pid = None

 def flush(self):
 '''This does nothing. It is here to support the interface for a
 File-like object. '''

 pass

 def isatty(self):
 '''This returns True if the file descriptor is open and connected to a
 tty(-like) device, else False.

 On SVR4-style platforms implementing streams, such as SunOS and HP-UX,
 the child pty may not appear as a terminal device. This means
 methods such as setecho(), setwinsize(), getwinsize() may raise an
 IOError. '''

 return os.isatty(self.fd)

 def waitnoecho(self, timeout=None):
 '''This waits until the terminal ECHO flag is set False. This returns
 True if the echo mode is off. This returns False if the ECHO flag was
 not set False before the timeout. This can be used to detect when the
 child is waiting for a password. Usually a child application will turn
 off echo mode when it is waiting for the user to enter a password. For
 example, instead of expecting the "password:" prompt you can wait for
 the child to set ECHO off::

 p = pexpect.spawn('ssh user@example.com')
 p.waitnoecho()
 p.sendline(mypassword)

 If timeout==None then this method to block until ECHO flag is False.
 '''

 if timeout is not None:
 end_time = time.time() + timeout
 while True:
 if not self.getecho():
 return True
 if timeout < 0 and timeout is not None:
 return False
 if timeout is not None:
 timeout = end_time - time.time()
 time.sleep(0.1)

 def getecho(self):
 '''This returns the terminal echo mode. This returns True if echo is
 on or False if echo is off. Child applications that are expecting you
 to enter a password often set ECHO False. See waitnoecho().

 Not supported on platforms where ``isatty()`` returns False. '''

 try:
 attr = termios.tcgetattr(self.fd)
 except termios.error as err:
 errmsg = 'getecho() may not be called on this platform'
 if err.args[0] == errno.EINVAL:
 raise IOError(err.args[0], '%s: %s.' % (err.args[1], errmsg))
 raise

 self.echo = bool(attr[3] & termios.ECHO)
 return self.echo

 def setecho(self, state):
 '''This sets the terminal echo mode on or off. Note that anything the
 child sent before the echo will be lost, so you should be sure that
 your input buffer is empty before you call setecho(). For example, the
 following will work as expected::

 p = pexpect.spawn('cat') # Echo is on by default.
 p.sendline('1234') # We expect see this twice from the child...
 p.expect(['1234']) # ... once from the tty echo...
 p.expect(['1234']) # ... and again from cat itself.
 p.setecho(False) # Turn off tty echo
 p.sendline('abcd') # We will set this only once (echoed by cat).
 p.sendline('wxyz') # We will set this only once (echoed by cat)
 p.expect(['abcd'])
 p.expect(['wxyz'])

 The following WILL NOT WORK because the lines sent before the setecho
 will be lost::

 p = pexpect.spawn('cat')
 p.sendline('1234')
 p.setecho(False) # Turn off tty echo
 p.sendline('abcd') # We will set this only once (echoed by cat).
 p.sendline('wxyz') # We will set this only once (echoed by cat)
 p.expect(['1234'])
 p.expect(['1234'])
 p.expect(['abcd'])
 p.expect(['wxyz'])

 Not supported on platforms where ``isatty()`` returns False.
 '''
 _setecho(self.fd, state)

 self.echo = state

 def read(self, size=1024):
 """Read and return at most ``size`` bytes from the pty.

 Can block if there is nothing to read. Raises :exc:`EOFError` if the
 terminal was closed.

 Unlike Pexpect's ``read_nonblocking`` method, this doesn't try to deal
 with the vagaries of EOF on platforms that do strange things, like IRIX
 or older Solaris systems. It handles the errno=EIO pattern used on
 Linux, and the empty-string return used on BSD platforms and (seemingly)
 on recent Solaris.
 """
 try:
 s = self.fileobj.read1(size)
 except (OSError, IOError) as err:
 if err.args[0] == errno.EIO:
 # Linux-style EOF
 self.flag_eof = True
 raise EOFError('End Of File (EOF). Exception style platform.')
 raise
 if s == b'':
 # BSD-style EOF (also appears to work on recent Solaris (OpenIndiana))
 self.flag_eof = True
 raise EOFError('End Of File (EOF). Empty string style platform.')

 return s

 def readline(self):
 """Read one line from the pseudoterminal, and return it as unicode.

 Can block if there is nothing to read. Raises :exc:`EOFError` if the
 terminal was closed.
 """
 try:
 s = self.fileobj.readline()
 except (OSError, IOError) as err:
 if err.args[0] == errno.EIO:
 # Linux-style EOF
 self.flag_eof = True
 raise EOFError('End Of File (EOF). Exception style platform.')
 raise
 if s == b'':
 # BSD-style EOF (also appears to work on recent Solaris (OpenIndiana))
 self.flag_eof = True
 raise EOFError('End Of File (EOF). Empty string style platform.')

 return s

 def _writeb(self, b, flush=True):
 n = self.fileobj.write(b)
 if flush:
 self.fileobj.flush()
 return n

 def write(self, s, flush=True):
 """Write bytes to the pseudoterminal.

 Returns the number of bytes written.
 """
 return self._writeb(s, flush=flush)

 def sendcontrol(self, char):
 '''Helper method that wraps send() with mnemonic access for sending control
 character to the child (such as Ctrl-C or Ctrl-D). For example, to send
 Ctrl-G (ASCII 7, bell, '\a')::

 child.sendcontrol('g')

 See also, sendintr() and sendeof().
 '''
 char = char.lower()
 a = ord(char)
 if 97 <= a <= 122:
 a = a - ord('a') + 1
 byte = _byte(a)
 return self._writeb(byte), byte
 d = {'@': 0, '`': 0,
 '[': 27, '{': 27,
 '\\': 28, '|': 28,
 ']': 29, '}': 29,
 '^': 30, '~': 30,
 '_': 31,
 '?': 127}
 if char not in d:
 return 0, b''

 byte = _byte(d[char])
 return self._writeb(byte), byte

 def sendeof(self):
 '''This sends an EOF to the child. This sends a character which causes
 the pending parent output buffer to be sent to the waiting child
 program without waiting for end-of-line. If it is the first character
 of the line, the read() in the user program returns 0, which signifies
 end-of-file. This means to work as expected a sendeof() has to be
 called at the beginning of a line. This method does not send a newline.
 It is the responsibility of the caller to ensure the eof is sent at the
 beginning of a line. '''

 return self._writeb(_EOF), _EOF

 def sendintr(self):
 '''This sends a SIGINT to the child. It does not require
 the SIGINT to be the first character on a line. '''

 return self._writeb(_INTR), _INTR

 def eof(self):
 '''This returns True if the EOF exception was ever raised.
 '''

 return self.flag_eof

 def terminate(self, force=False):
 '''This forces a child process to terminate. It starts nicely with
 SIGHUP and SIGINT. If "force" is True then moves onto SIGKILL. This
 returns True if the child was terminated. This returns False if the
 child could not be terminated. '''

 if not self.isalive():
 return True
 try:
 self.kill(signal.SIGHUP)
 time.sleep(self.delayafterterminate)
 if not self.isalive():
 return True
 self.kill(signal.SIGCONT)
 time.sleep(self.delayafterterminate)
 if not self.isalive():
 return True
 self.kill(signal.SIGINT)
 time.sleep(self.delayafterterminate)
 if not self.isalive():
 return True
 if force:
 self.kill(signal.SIGKILL)
 time.sleep(self.delayafterterminate)
 if not self.isalive():
 return True
 else:
 return False
 return False
 except OSError:
 # I think there are kernel timing issues that sometimes cause
 # this to happen. I think isalive() reports True, but the
 # process is dead to the kernel.
 # Make one last attempt to see if the kernel is up to date.
 time.sleep(self.delayafterterminate)
 if not self.isalive():
 return True
 else:
 return False

 def wait(self):
 '''This waits until the child exits. This is a blocking call. This will
 not read any data from the child, so this will block forever if the
 child has unread output and has terminated. In other words, the child
 may have printed output then called exit(), but, the child is
 technically still alive until its output is read by the parent. '''

 if self.isalive():
 pid, status = os.waitpid(self.pid, 0)
 else:
 return self.exitstatus
 self.exitstatus = os.WEXITSTATUS(status)
 if os.WIFEXITED(status):
 self.status = status
 self.exitstatus = os.WEXITSTATUS(status)
 self.signalstatus = None
 self.terminated = True
 elif os.WIFSIGNALED(status):
 self.status = status
 self.exitstatus = None
 self.signalstatus = os.WTERMSIG(status)
 self.terminated = True
 elif os.WIFSTOPPED(status): # pragma: no cover
 # You can't call wait() on a child process in the stopped state.
 raise PtyProcessError('Called wait() on a stopped child ' +
 'process. This is not supported. Is some other ' +
 'process attempting job control with our child pid?')
 return self.exitstatus

 def isalive(self):
 '''This tests if the child process is running or not. This is
 non-blocking. If the child was terminated then this will read the
 exitstatus or signalstatus of the child. This returns True if the child
 process appears to be running or False if not. It can take literally
 SECONDS for Solaris to return the right status. '''

 if self.terminated:
 return False

 if self.flag_eof:
 # This is for Linux, which requires the blocking form
 # of waitpid to get the status of a defunct process.
 # This is super-lame. The flag_eof would have been set
 # in read_nonblocking(), so this should be safe.
 waitpid_options = 0
 else:
 waitpid_options = os.WNOHANG

 try:
 pid, status = os.waitpid(self.pid, waitpid_options)
 except OSError as e:
 # No child processes
 if e.errno == errno.ECHILD:
 raise PtyProcessError('isalive() encountered condition ' +
 'where "terminated" is 0, but there was no child ' +
 'process. Did someone else call waitpid() ' +
 'on our process?')
 else:
 raise

 # I have to do this twice for Solaris.
 # I can't even believe that I figured this out...
 # If waitpid() returns 0 it means that no child process
 # wishes to report, and the value of status is undefined.
 if pid == 0:
 try:
 ### os.WNOHANG) # Solaris!
 pid, status = os.waitpid(self.pid, waitpid_options)
 except OSError as e: # pragma: no cover
 # This should never happen...
 if e.errno == errno.ECHILD:
 raise PtyProcessError('isalive() encountered condition ' +
 'that should never happen. There was no child ' +
 'process. Did someone else call waitpid() ' +
 'on our process?')
 else:
 raise

 # If pid is still 0 after two calls to waitpid() then the process
 # really is alive. This seems to work on all platforms, except for
 # Irix which seems to require a blocking call on waitpid or select,
 # so I let read_nonblocking take care of this situation
 # (unfortunately, this requires waiting through the timeout).
 if pid == 0:
 return True

 if pid == 0:
 return True

 if os.WIFEXITED(status):
 self.status = status
 self.exitstatus = os.WEXITSTATUS(status)
 self.signalstatus = None
 self.terminated = True
 elif os.WIFSIGNALED(status):
 self.status = status
 self.exitstatus = None
 self.signalstatus = os.WTERMSIG(status)
 self.terminated = True
 elif os.WIFSTOPPED(status):
 raise PtyProcessError('isalive() encountered condition ' +
 'where child process is stopped. This is not ' +
 'supported. Is some other process attempting ' +
 'job control with our child pid?')
 return False

 def kill(self, sig):
 """Send the given signal to the child application.

 In keeping with UNIX tradition it has a misleading name. It does not
 necessarily kill the child unless you send the right signal. See the
 :mod:`signal` module for constants representing signal numbers.
 """

 # Same as os.kill, but the pid is given for you.
 if self.isalive():
 os.kill(self.pid, sig)

 def getwinsize(self):
 """Return the window size of the pseudoterminal as a tuple (rows, cols).
 """
 TIOCGWINSZ = getattr(termios, 'TIOCGWINSZ', 1074295912)
 s = struct.pack('HHHH', 0, 0, 0, 0)
 x = fcntl.ioctl(self.fd, TIOCGWINSZ, s)
 return struct.unpack('HHHH', x)[0:2]

 def setwinsize(self, rows, cols):
 """Set the terminal window size of the child tty.

 This will cause a SIGWINCH signal to be sent to the child. This does not
 change the physical window size. It changes the size reported to
 TTY-aware applications like vi or curses -- applications that respond to
 the SIGWINCH signal.
 """
 return _setwinsize(self.fd, rows, cols)

[docs]class PtyProcessUnicode(PtyProcess):
 """Unicode wrapper around a process running in a pseudoterminal.

 This class exposes a similar interface to :class:`PtyProcess`, but its read
 methods return unicode, and its :meth:`write` accepts unicode.
 """
 if PY3:
 string_type = str
 else:
 string_type = unicode # analysis:ignore

 def __init__(self, pid, fd, encoding='utf-8', codec_errors='strict'):
 super(PtyProcessUnicode, self).__init__(pid, fd)
 self.encoding = encoding
 self.codec_errors = codec_errors
 self.decoder = codecs.getincrementaldecoder(encoding)(errors=codec_errors)

 def read(self, size=1024):
 """Read at most ``size`` bytes from the pty, return them as unicode.

 Can block if there is nothing to read. Raises :exc:`EOFError` if the
 terminal was closed.

 The size argument still refers to bytes, not unicode code points.
 """
 b = super(PtyProcessUnicode, self).read(size)
 return self.decoder.decode(b, final=False)

 def readline(self):
 """Read one line from the pseudoterminal, and return it as unicode.

 Can block if there is nothing to read. Raises :exc:`EOFError` if the
 terminal was closed.
 """
 b = super(PtyProcessUnicode, self).readline()
 return self.decoder.decode(b, final=False)

 def write(self, s):
 """Write the unicode string ``s`` to the pseudoterminal.

 Returns the number of bytes written.
 """
 b = s.encode(self.encoding)
 return super(PtyProcessUnicode, self).write(b)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Ptyprocess

 		
 Ptyprocess API

_static/down-pressed.png

_images/pty_vs_popen.png
Pseudoterminal

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

